
Using The Domain Name System to Thwart Automated

Client-Based Attacks

Curtis R. Taylor and Craig A. Shue

Cyberspace Sciences and Information Intelligence Research Group

Oak Ridge National Laboratory

{taylorcr, cshue}@ornl.gov

Abstract

On the Internet, attackers can compromise systems
owned by other people and then use these systems to
launch attacks automatically. When attacks such as
phishing or SQL injections are successful, they can
have negative consequences including server down-
time and the loss of sensitive information. Current
methods to prevent such attacks are limited in that
they are application-specific, or fail to block attack-
ers. Phishing attempts can be stopped with email
filters, but if the attacker manages to successfully by-
pass these filters, then the user must determine if the
email is legitimate or not. Unfortunately, they of-
ten are unable to do so. Since attackers have a low
success rate, they attempt to compensate for it in vol-
ume. In order to have this high throughput, attack-
ers take shortcuts and break protocols. We use this
knowledge to address these issues by implementing a
system that can detect malicious activity and use it to
block attacks. If the client fails to follow proper pro-
cedure, they can be classified as an attacker. Once
an attacker has been discovered, they are isolated
and monitored. This can be accomplished using ex-
isting software in Ubuntu Linux applications, along
with our custom wrapper application. After running
the system and seeing its performance on three pop-
ular Web browsers Chromium, Firefox and Internet
Explorer as well as two popular email clients Thun-
derbird and Evolution, we found that not only is this
system conceivable, it is effective and has low over-
head.

1 Introduction

Attackers can compromise systems owned by other
people and then use these systems to launch attacks
automatically. This increases the challenge of dis-
tinguishing good and bad traffic. A researcher at
McAfee recently revealed a study showing 72 network
intrusions to global companies in the last 5 years, in
which 68% of attacks targeted locations in the United
States [2]. Since the Internet’s inception, many secu-
rity techniques have been introduced to prevent net-
work attacks. One example is DNSSEC which helps
to provide origin authentication and integrity assur-
ances for the DNS messages [4]. A problem plaguing
DNSSEC, and other Internet security features alike,
is that it has a low adoption rate [8]. We attempt
to overcome this by providing a simple, yet robust,
system. In our studies, we use the DNS as an access
control system by lowering time-to-live (TTL) val-
ues and periodically updating the IP addresses of all
the machines on the network. In doing this, we are
creating a moving target system that will help miti-
gate attacks. Our first method in developing this sys-
tem involves manipulating the routing tables, along
with IP fluxing, and the second is a Network Address
Translation (NAT) based approach. Both approaches
continuously update the IP addresses of servers. This
means each approach is limited only by the number
of addresses available in the pool of a given subnet.

1



2 Related Work

Attempts have been made to provide network access
control by manipulating the DNS. One method al-
lowed a server, upon receiving a DNS request from
a source, to look at a blacklist and determine if the
source was allowed to have access to the host the
source was inquiring about. If the source was on the
blacklist, an error was returned notifying the user
that the host could not be located [10]. An issue
with this approach is that attackers will attack a net-
work once and not return to it rendering a blacklist
pointless. Aside from the fact that a blacklist can be
rendered moot, creating a blacklist is not easy. In
order to add a client to a blacklist, you must tie their
DNS resolver to the malicious activity, which can be
challenging. Additionally, if a user is unknowingly
part of a botnet and takes part in the attack, they
will be blacklisted. By turning the DNS into an ac-
cess control system we are helping to resolve these
issues by using a method that will prevent attacks
from happening.

Fast-flux service networks have been used by online
scam campaigns. By making extensive use of fast-flux
service networks, scammers are able to manipulate
the location of malicious hosts, mitigating the effec-
tiveness of blacklists. After comparing a large sample
of scamming campaign domain IP addresses with var-
ious blacklists, Konte et al.discovered that as much as
a third of them were not present in the blacklist [9].
Using this information, we can apply this method to
our non-malicious servers. By using fast-flux as a
defensive tool, we are moving our servers around so
that attackers cannot access them without following
protocols to locate them. Even after finding them,
the location they find will not be active long enough
for them to do severe damage.

One purposed solution to preventing denial of ser-
vice (DoS) attacks uses network capabilities. The
idea is that any node wishing to send data to another
node has to obtain “permission to send” through a
series of tokens given out by a request to send (RTS)
server, and the tokens are to later be authenticated
using validation points (VPs). Using this system, if
a server was under a DoS attack, any user already
connected would not see any interruption, but since

all new connections must obtain an RTS, the server
providing the RTS would be overwhelmed. To keep
from hurting the performance of established connec-
tions, the percent of bandwidth allocated to the RTS
server would be decreased [3]. For websites that are
heavily trafficked, it would be preferred to not block
any new users trying to connect. This weakness pro-
voked a response by Argyraki et al. [5], which sug-
gested preventing DoS attacks using their datagram
approach. Unfortunately, the response is at a high-
level of discussion and not an actual implementation
they show would withstand an attack. They also ar-
gued that capabilities separate traffic into good and
bad, and in actuality there is traffic that falls in nei-
ther category. Furthermore, by using the capabilities
approach, the network is only moving the issue of a
DoS attack to a denial of capabilities (DoC) attack.
Similarly, an approach to preventing distributed DoS
(DDoS) attacks also uses a packet marking scheme.
When a router receives a packet in transmission from
source to destination, it embeds a fingerprint in ev-
ery packet. The advantage of using this scheme is
evident when considering the traditional method of
trying to trace a packet’s path back to a source. Nor-
mally a large number of packets are needed before
being able to figure out the entire path, but with a
fingerprint scheme, this process is faster. The down-
side to this method is that it would require at least
half of the routers in the path to follow the scheme
and does not provide much flexibility to the user [13].
Although these are generally automated attacks, our
research does not attempt to solve the problem of
DoS or DDoS directly, and our system may still be
susceptible to this type of attack.
With the increasing number of phishing scams,

browsers have started implementing phishing tool-
bars to help prevent users from accessing known
phishing pages. Abu-Nimeh et al., discovered that
these toolsbars are easily deceived [1]. They created
a scenario involving the use of a rogue access point
(AP) and showed that if a user connected through
them, the attacker could use DNS poisoning to con-
nect the user to any IP address the attacker chose.
To verify this address, the user’s browser tried a
DNS lookup to verify the address, but since it went
through a rogue AP, it appeared legitimate. All of the

2



toolbars tested failed to recognize this attack. Even
when not connected to a rouge AP, a DNS server is
still vulnerable to poisoning. These types of network
attacks are extremely dangerous to users due to the
stealthiness of the attack. Often the target of at-
tack for DNS poisoning is the recursive server. An
attacker will submit a query causing the recursive
sever to send out a request to resolve the domain.
When this happens, the attacker has a fairly good
chance of guessing the 16-bit ID field that the re-
cursive server is expecting the SOA to return with,
giving the attacker the ability to poison the server.
Generally, with minor exceptions, the query is copied
exactly the way the initiator’s packet was sent, which
can cause unnecessary lookups (e.g., “goOgLE.COm”
vs “google.com”). A very efficient and simple solu-
tion to this is to convert all queries into lowercase
and then use 0x20 encoding so that all entries in
cache will be the same, reducing the chance of poi-
soning [6]. Although there is not much that can be
done for connecting to a rouge AP, DNS poisoning is
a concern for our approach. With short TTLs, there
will inevitably be more DNS lookups that take place.
For this reason, a simple and efficient 0x20 encod-
ing method might be preferred to use alongside our
system.

3 Methodology

To show that our system works, we created a net-
work in a laboratory environment and ran various
tests. We now describe our experimental designs and
results.

3.1 Tools Utilized

All machines were connected via a network switch
and running the Ubuntu 11.04 operating system with
the exception of the client machine that was also run-
ning a virtual machine hosting Windows XP - SP2
and Windows 7 Professional. The Web browsers used
were Mozilla Firefox 5, Google Chromium 12.0.742.91
(Ubuntu)/10.0.648.134 (Windows), and Internet Ex-
plorer 8 (Win 7)/6 (Win XP). The mail transfer agent
(MTA) used was Postfix 2.8.2, and the mail applica-

tions tested were Thunderbird 3.1.11 (Ubuntu)/ 5.0
(Windows) and Evolution 2.32.2 (Ubuntu). Apache
2.2.17 was also installed as the Web Server, and BIND
9.7.3 was installed to handle the DNS. Finally, Wire-
shark 1.4.6 was installed for capturing network traffic.

3.2 Network and System Configura-

tion using Routes

In our test network for the first approach, we used
four machines running Ubuntu 11.04 as shown in Ta-
ble 1. The first three machines were connected us-
ing an Ethernet switch. The first machine, desig-
nated as our router, mail server, and the authori-
tative DNS server, had two network cards and the
fourth machine, which we designated as our client,
was connected through the router’s second network
card. The second machine was configured as a Web
server while the third was configured as a honeypot.

Table 1: Computer list for Experiment 1

ID Role IP Address Route(s) Gateway
1 Router and 192.168.1.1 192.168.1.0/24 Direct (eth0)

DNS server 10.0.0.1 10.1.1.1/32 Direct (eth1)
Dynamic: 10.0.0.0/8 10.1.1.1 (eth1)
10.0.0.2 10.0.0.2/32 Direct (eth1)
10.0.0.3 10.0.0.3/32 Direct (eth1)

10.8.4.9/32 Direct (eth1)
10.7.3.6/32 Direct (eth1)

2 Web server Dynamic: 0.0.0.0/0 10.0.0.1
10.8.4.9
10.7.3.6

3 Honeypot 10.1.1.1 0.0.0.0/0 10.0.0.1
4 Client 192.168.1.100 0.0.0.0/0 192.168.1.1

We now describe each of these machines in greater
detail:

• Machine 1: This machine acted as our router,
mail server, and the DNS server. We installed
Postfix 2.8.2 to handle mail transfers, and BIND
9.7.3 to create a local DNS server with authority
for example.com. The zone file was configured to
have a 10 second refresh, retry, expire, and neg-
ative cache. In the zone file, we had A records
for Machine 2 and for the mail server (Machine
1’s dynamic address), which were modified as

3



needed. A query for either machine name re-
turned the most recently assigned IP address of
the host. The router had routes for the mail
server’s aliases, each alias of Machine 2, a route
for Machine 3, and a route for 10.0.0.0/8, using
Machine 3 as the gateway, all through Interface
1. Finally, it had a route for 192.168.1.0/24 for
Machine 4 through Interface 0.

• Machine 2: The Web server, with Apache
2.2.17 installed, is designed to be the “protected
server” in the network. In this machine’s Apache
httpd.conf file, two changes were made. One
change disabled ETag and Last-Modified head-
ers so every access to Apache appeared as a
new page request and was not already stored in
cache. The second change allowed the execution
of CGI scripts. The second machine used two
IP aliases on its network interface. Since it used
two aliases, the machine could accept connec-
tions from the previous IP address, which was
necessary since the DNS server may have pro-
vided the old IP address immediately prior to
the rotation, meaning that the IP would need to
remain valid until the TTL on that record ex-
pired, which the usage of a prior alias supports.
This machine had a single entry in its routing
table for the gateway, Machine 1.

• Machine 3: Machine 3 was designed to be a
honeypot computer where all traffic was sent by
default. This machine intercepted all expired IP
addresses from Machine 2 as well as any other
IPs that are unused in the 10.0.0.0/8 prefix.

• Machine 4: Our client machine ran Linux na-
tively, but also used VirtualBox to host twoWin-
dows virtual machines. The guests were Win-
dows XP service pack 2 and Windows 7 Pro-
fessional. The machine had variants of the top
three Web browsers installed on the host and two
guests: Mozilla Firefox 5 (on the host and both
guests), Google Chromium (version 12.0.742.91
on the host, version 10.0.648.134 on the guests),
and Internet Explorer (version 8 on the Windows
7 guest, version 6 on the Windows XP guest).
Together these browsers comprise approximately

94% of Web traffic [12]. Chromium had two fea-
tures for speeding up a user’s network brows-
ing experience: network and URL prediction.
For timing reasons, we disabled these features.
This machine also had two mail applications in-
stalled on Ubuntu, Thunderbird 3.1.11 and Evo-
lution 2.32.2, and one installed on both versions
of Windows, Thunderbird 5.0. The client used
static IPs for each of the guests and the host OS.
Each were in the 192.168.1.0/24 subnet. Each of
these OSes had a static route for its gateway,
Machine 1, and each were configured with Ma-
chine 1 as their DNS server.

3.3 Experiment 1

The system launches from a program on Machine 1,
and begins by traversing the zone file. For each A

record, a random IP address is generated, within the
subnet of the network, to replace the current IP. As
each IP is changed, the old address becomes the sec-
ond alias on the respective machine, and the new ad-
dress becomes the newest IP alias. This is done re-
motely from the router. After all records have been
updated, BIND is issued a reload to reflect the new
information in the zone file. As soon at BIND has
successfully reloaded, any client that attempts to ac-
cess a server that has just had its A record updated
will receive the IP address just placed in the zone file.

To give a more lucid and in depth description, we
will give an example of how the update process works
with all four of our configured machines. Figure 1
shows an example network.

Figure 1: Configuration for Experiment 1 Before Up-
date

4



In this network, there are two A records, that of
the mail server and Machine 2. Traversing the zone
file, each record is found and is assigned a random IP
address, in this case 10.1.2.3 and 10.5.6.7. The zone
file is then changed to reflect this. The aliases are
then added to each machine as the first alias replacing
the old first IP, for example in Machine 2 10.0.0.77
and moving it to the second alias replacing 10.0.0.88.
With the introduction of new IP addresses to the
network, the routing tables must be updated or the
10.0.0.0/8 route of the honeypot will be taken for
this new address. Therefore, each newly generated
IP has a route added with the gateway of Machine 1,
and the old route is deleted. Since the old routes no
longer exist in Machine 1 and it falls in the 10.0.0.0/8
range, anyone who tries to access an old address will
be seeing our honeypot. At this point, BIND is given
a reload command. The system then waits until the
TTLs of the new aliases are approaching expiration
and need replacing. Figure 2 shows how the original
example network would appear after this test run.

Figure 2: Configuration for Experiment 1 After Up-
date

3.4 Experiment 2

The introduction of iptables is what defines exper-
iment 2 since it allows us to implement an efficient
method of NAT. For this experiment, the major ad-
justment takes place in Machine 1. The only other
change was to Machine 2 and 3 which now only have
static addresses and no longer have aliases on their
machines. Everything will be handled at the router.
Therefore, we will only explain the new configuration
for Machine 1.

• Machine 1: This machine acts as our router,
mail server, and the DNS server. We installed
Postfix 2.8.2 to handle mail transfers, and BIND
9.7.3 to create a local DNS server with authority
for example.com. The zone file was configured to
have a 10 second refresh, retry, expire, and neg-
ative cache. In the zone file, we have A records
for Machine 2 and for the mail server, which can
be modified as needed. A query for either ma-
chine name returns the most recently assigned IP
address of the host. The router has routes stat-
ically configured to Machine 2, Machine 3, and
a route to 192.168.1.0/24 for Machine 4 through
Interface 0. Finally, there are six entries in the
NAT table. The first two entries are that of the
mail server redirecting traffic from its alias to its
static IP. The next two entires map Machine 2’s
aliases to its static IP, and the fifth entry allows
access to the DNS server by allowing traffic to
10.0.0.1/32 to be redirected to itself. The last
entry maps 10.0.0.0/8 to Machine 3, the honey-
pot.

Table 2 shows how routes are configured for this
experiment. These routes are never altered after load
time.

Table 2: Routing table for example network

ID Role IP Address Route(s) Gateway
1 Router and 192.168.1.1 192.168.1.0/24 Direct (eth0)

DNS server 10.0.0.1 10.0.0.10/32 Direct (eth1)
10.1.1.1/32 Direct (eth1)

2 Web server 10.0.0.10 0.0.0.0/0 10.0.0.1
3 Honeypot 10.1.1.1 0.0.0.0/0 10.0.0.1
4 Client 192.168.1.100 0.0.0.0/0 192.168.1.1

Table 3 shows how the NAT table will appear on
Machine 1. Here, the two aliases for the mail server
and the two aliases for Machine 2 are the first rules
in the PREROUTING table in iptables to be ad-
dressed. If one of these rules fit, the traffic will be
forwarded to the corresponding redirect address. In
order to avoid all traffic accessing the DNS server be-
ing redirected to the honeypot, we include a rule for
10.0.0.1 to be redirected to itself. Since no rule in the
NAT table fits 192.168.1.0/24, the routing table will

5



control the flow of this data.

Table 3: NAT table on Machine 1 Before Update

Destination Redirect to
10.0.0.2/32 10.0.0.1 (eth1)
10.0.0.3/32 10.0.0.1 (eth1)
10.0.0.77/32 10.0.0.10 (eth1)
10.0.0.88/32 10.0.0.10 (eth1)
10.0.0.1/32 10.0.0.1 (eth1)
10.0.0.0/8 10.1.1.1 (eth1)

Similar to that of the first approach, we start by
traversing the zone file. When an A record is found,
we generate a new address to replace the old. As soon
this address is replaced in the zone file, it is added
to the NAT table using iptables to insert a rule.
By using insert, we add the new rule to the top of
the PREROUTING table so it will be priority over
other rules, and by inserting this rule before restart-
ing BIND, the new IP address is actually accessible
before the zone file is reloaded to reflect the changes.
After all changes are made to the zone file, BIND is
restarted. Lastly, the old aliases are removed from
the NAT table. Using the same random addresses
as experiment 1, Table 4 reflects the changes to the
NAT table.

Table 4: NAT table on Machine 1 After Update

Destination Redirect to
10.1.2.3/32 10.0.0.1 (eth1)
10.0.0.2/32 10.0.0.1 (eth1)
10.5.6.7/32 10.0.0.10 (eth1)
10.0.0.77/32 10.0.0.10 (eth1)
10.0.0.1/32 10.0.0.1 (eth1)
10.0.0.0/8 10.1.1.1 (eth1)

3.5 Web and Mail Tests

We performed our Web browser and mail client tests
in the same way for the experiments.
In order to test how the browsers performed, we

navigated to Machine 2’s Web server via its domain
name. Following this, we issued HTTP requests by
either refreshing every 10 seconds or navigating to

another link provided on the page but did so consis-
tently. If the browser failed to perform as expected
with our 10 second TTL, we continued issuing HTTP
requests until normal activity resumed, which is de-
scribed in the results section.
The approach used to test the mail clients was sim-

ilar to that of the Web browsers. We configured each
client using POP/SMTP for incoming and outgoing
mail and attempted to retrieve new mail using each
application’s “Get Mail” function every 10 seconds.
The mail server was configured to have the same in-
coming and outgoing domain so that trying to receive
mail would test the same network features as trying
to send mail.

4 Results

We now explain in detail the results from experiment
1, the approach using routing tables to manipulate
data flow, and experiment 2, where we used NAT.

One valid concern was whether or not ARP entries
would take precedence over routing and NAT tables
resulting in data being sent to the wrong location.
Considering a situation where a client was actively
accessing an address associated to Machine 2 that was
about to expire. After the address is retired, subse-
quent traffic should be sent to the honeypot, but the
router will have an entry the ARP table associating
this old IP to the MAC address of Machine 2, and
it will be labeled reachable, but as it turns out, this
does not disrupt traffic.

Across both experiments, several other details were
uncovered relating both to the operating systems and
browsers. First, Ubuntu, and many other Linux op-
erating systems, do not have pre-installed caching ca-
pabilities. An application such as the name service
cache daemon (nscd) could be installed to provide
caching capabilities, but we chose to use the default
Ubuntu configuration without the cache. Windows
XP and 7 both have a built in the DNS cache. This
cache is viewable via command line using ipconfig

/displaydns and will display all the current entries
in the DNS cache along with corresponding values
including that of the TTL. In both versions of Win-
dows, the OS cache respects TTL values, allowing

6



them to timeout properly. This means if you use a
program such as ping that uses the OS’s cache, it
will perform a DNS query after the TTL is expired
and will never pin it.
On the other hand, browsers have their own in-

ternal cache and behave differently. When testing
each browser, we saw different types of behavior when
given different variables. For instance, each browser
reacted differently when the honeypot would drop
packets instead of accept them or when the user nav-
igated to links listed on the Web page versus refresh-
ing the page. As a result, before giving the results
on how the experiments carried out, we will first try
explain the Web browser’s behavior. There were two
main reasons for the varying behavior found. The
first reason was whether the user was actually re-
freshing the Web site or merely navigating the site
through links listed on the page. Obviously, the lat-
ter is the more common scenario. The other aspect
causing variation was whether or not our honeypot
was silently dropping packets or accepting them. Ta-
ble 5 shows how this behavior varies across each OS
and browser.

Table 5: Dropping Packets

Behavior -
Operating System(s) Browser(s) (Refreshing/

Navigating Internally)
Windows XP Chrome Query every 10 seconds/
Windows 7 Firefox Timeout after 21 seconds
Ubuntu Chrome Query every 10 seconds/

Firefox Timeout after 190 seconds
Windows XP IE6 After 21 seconds, sends query/

Timeout after 21 seconds
Windows 7 IE8 After 21 seconds, connection fails/

Timeout after 21 seconds

If the honeypot were dropping packets, Chrome
and FF would respect our TTL if the client manu-
ally refreshed. With both of these browsers accepting
such low TTL values and not pinning them, they are
also more susceptible to DNS rebinding, but as dis-
covered by Jackson et al. [7], DNS pinning is ineffec-
tive in modern browsers because of vulnerabilities in-
troduced by plug-ins. On the other hand, if the client
were browsing inside the Web page (i.e., navigating

links listed on the page), these two browsers would
behave differently depending on if the honeypot was
dropping packets. If packets were being dropped,
both browsers would timeout after about 21 seconds
on Windows and after 190 seconds on Ubuntu. IE6
behaved differently from Crome and Firefox when the
honeypot silently dropped packets. If the user re-
quested a refresh on IE6, the browser would try the
address cached for about 21 seconds then would issue
a DNS request and the page would update accord-
ingly. Additionally, on IE6 if the user navigated in-
ternally, after about 21 seconds the page would fail to
connect and display a 404 error to the user. Interest-
ingly, if the user then requested a refresh, IE6 would
issue a DNS request and update. This differs from
IE8, which never issued a DNS request (until the 30
minute TTL expired) if the honeypot was dropping
packets. It was also found that after IE8 fails to con-
nect, if you use the “Diagnose Connection Problems”
feature, behind the scenes IE8 will send a DNS re-
quest, get the new IP address, and then successfully
use the new address for a GET HTTP. IE8 then pro-
ceeds to tell you that “Troubleshooting could’t iden-
tify the problem” and continues to leave the failed
IP in cache. Although it would have been possible
to change the DNS cache length on IE for possibly
better results, we did not take this approach [11].
As for configuring the honeypot to accept packets,
we found normal DNS pinning for each browser as
shown in Table 6.

Table 6: Dropping Packets

Browser(s) Operating System(s) Length of DNS Pin
Windows XP

Chrome Windows 7 1 minute
Ubuntu

Windows XP
Firefox Windows 7 3.5 minutes

Ubuntu
IE6 Windows XP 30 minutes
IE8 Windows 7 30 minutes

Mail clients did not appear to be affected by
the honeypot’s decision regarding dropping packets.
Evolution was found to never implement DNS pin-
ning. Conversely, Thunderbird pinned for 3.5 min-

7



utes on all three OSes. Although the applications
did handle packets being dropped well, the amount
of time needed before the application’s connection
would timeout while trying to connect was different
between Ubuntu and Windows. On Ubuntu, it took
about 2.66 minutes to timeout and about 21 seconds
on Windows.
Another possible concern for our approach is the

amount of time it takes BIND to restart on each
reload. We found that by using rndc reload

example.com, reloading a new zone file took about
13.6ms. The results took effect immediately as the
restart finished. In the case that someone accessed
the original domain during the reload, BIND would
simply use the IP address stored in its cache.

4.1 Experiment 1 Results

This approach works but has several issues. Exist-
ing connections are broken when a route is dropped.
Also, any time a host’s IP address was changed, the
address had to be added on the host as an alias and
updated in the router and the DNS server. We did
this using SSH, and the time it took to update an
address was about 323ms.
Additionally, this means that even though the

10.0.0.0/8 route caught all traffic not directly asso-
ciated to a host, the honeypot still needed to have
the address the client was trying to access in order
for traffic to be routed to it, and in order to catch all
traffic from expired addresses, the honeypot would
have to have many aliases.

4.2 Experiment 2 Results

In experiment 2 we chose to implement NAT using
iptables, and as a result, we gained several benefits.
These benefits include more control over what is go-
ing through the network with the ability to regulate
certain protocols and controlling the ports they use,
but the main reason for choosing this approach was
because it fixed the dilemma that involved breaking
connections. Fortunately, if there is an active connec-
tion (e.g., uploading an image) on a host’s IP address
when the IP address expires and moves to the hon-
eypot, the active connection is kept open until the

transfer finishes. This is handled in the Linux kernel.
When an address in the iptables NAT table is ac-
cessed, the connection is loaded into the kernel’s NAT
table. With the iptablesNAT table, we hold the in-
formation for all new connections, and in the kernel’s
NAT table, we maintain a list of existing connections.
Once the IP address a client is using expires, and
the transfer is finished, the connection is closed and
cleared from the kernel’s NAT table. Hereafter, any
connections to this address will be associated with
the honeypot.

Upon further exploration of NAT tables, it was also
discovered that they are considered before any routes.
From this, we see that NAT can be used to control
the initial flow of packets. Therefore by using NAT as
a firewall, we can stop certain protocols and ports at
the router and avoid unnecessary network traffic by
choosing not to send that data through the network
to the host. Because of this, if the data makes it
past the NAT tables, we can more confidently pass
the data to the routing table to correctly route the
data where it needs to go. This allows for routes to
remain static after load time.

This approach also removes any need for aliases on
machines, which took about 323 ms. This process is
replaced by adding entries to the NAT table, resulting
in a much more efficient process. On average, it takes
about 3.6ms to add or remove an entry from the NAT
table.

5 Conclusion

We seek to turn the DNS in an access control sys-
tem using one of our two mentioned methods. Our
first method provides an easy way to filter network
traffic based on solely using the built in route pro-
gram on Linux. While this approach uses only routes,
it is limited for several reasons. The host machines
must know all of its aliases in order for routes to
work properly. Every machine must be updated with
all new address, and updating every machine consis-
tently and efficiently can be costly depending on the
size of the network. Active connections will also be
lost when a change in addresses occur. The second
approach provides solutions to these difficulties by

8



making the routes static to the host machines and
only cycling entries in the NAT table. The latter
method also addresses having to give aliases to every
machine, and perhaps the biggest issue this method
solves is not dropping an active connection with the
IP being used is cycled to the honeypot.
The introduction of this approach allows for orga-

nizations to seamlessly create a moving target system
to help protect their machines from malicious activ-
ity. Incorporating our methods means that attackers
will have to follow proper rules in order to access data
on local host machines. To see how well our system
worked with a Web server, we tested three different
Web browsers and two of these browsers were also
tested on three different operating systems. We found
that Chromium and Firefox would allow at least a 4
minute TTL without issues, and Internet Explorer
would allow for a minimum of a 30 minutes TTL.

Acknowledgments

Notice: This submission was sponsored by a con-
tractor of the United States Government under con-
tract DE-AC05-00OR22725 with the United States
Department of Energy. The United States Govern-
ment retains, and the publisher, by accepting this
submission for publication, acknowledges that the
United States Government retains, a nonexclusive,
paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this submission, or
allow others to do so, for United States Government
purposes.

References

[1] S. Abu-Nimeh and S. Nair. Bypassing security
toolbars and phishing filters via DNS poisoning.
InGlobal Telecommunications Conference, 2008.
IEEE GLOBECOM 2008. IEEE, pages 1 –6, 30
2008-dec. 4 2008.

[2] Dmitri Alperovitch. Revealed: Operation shady
rat. http://blogs.mcafee.com/mcafee-labs/
revealed-operation-shady-rat, August
2011.

[3] Tom Anderson, Timothy Roscoe, and David
Wetherall. Preventing internet denial-of-service
with capabilities. SIGCOMM Computer Com-
munication Review, 34:39–44, January 2004.

[4] R. Arends, R. Austein, M. Larson, D. Massey,
and S. Rose. DNS Security Introduction and
Requirements. RFC 4033 (Proposed Standard),
March 2005.

[5] Katerina Argyraki and David Cheriton. Network
Capabilities: The Good, the Bad and the Ugly.
In Fourth Workshop on Hot Topics in Networks,
November 2005.

[6] David Dagon, Manos Antonakakis, Paul Vixie,
Tatuya Jinmei, and Wenke Lee. Increased DNS
forgery resistance through 0x20-bit encoding:
security via leet queries. In Proceedings of the
15th ACM conference on Computer and commu-
nications security, CCS ’08, pages 211–222, New
York, NY, USA, 2008. ACM.

[7] Collin Jackson, Adam Barth, Andrew Bortz,
Weidong Shao, and Dan Boneh. Protecting
browsers from dns rebinding attacks. In Com-
puter and Communications Security, pages 421–
431, 2007.

[8] A. J. Kalafut, C. A. Shue, and M. Gupta. Tour-
ing DNS open houses for trends and configura-
tions. IEEE/ACM Transactions on Networking,
PP(99):1, 2011.

[9] Maria Konte, Nick Feamster, and Jaeyeon Jung.
Fast flux service networks: Dynamics and roles
in hosting online scams. Technical Report GT-
CS-08-07, Georgia Institute of Technology and
Intel Research, 2008.

[10] S.A. Strentzsch and L.T. Donzis. Method and
apparatus for providing network access control
using a domain name system, July 2001. US
Patent 6,256,671.

[11] Microsoft Support. How internet explorer uses
the cache for dns host entries. http://support.
microsoft.com/kb/263558, 2011.

9



[12] W3Schools. Web statistics and trends.
http://www.w3schools.com/browsers/

browsers_stats.asp, June 2011.

[13] Abraham Yaar, Adrian Perrig, and Dawn Song.
Pi: A path identification mechanism to defend
against DDoS attacks. In In IEEE Symposium
on Security and Privacy, pages 93–107, 2003.

10


